Vedang Waradpande

30 Newport Pkwy, Apt 2712, Jersey City, NJ 07310		+1 (848) 437-1822		
vedang.waradpande@gmail.com	vedangw.github.io	LinkedIn	LinkedIn <u>GitHub</u>	
EDUCATION				
M.S. in Computer Science - Rutgers University, New Brunswick (GPA: 3.92/4.0) Concentration: Machine Learning			Sep 2021 – May 2023	
B.E. (Honors) in Computer Science - Birla Institute of Technology and Science, Pilani (GPA: 7.82/10.0)			Aug 2015 – Jul 2019	

RESEARCH EXPERIENCE

Research Teaching Specialist III

New Jersey Medical School, *Rutgers University* Oct 2022 – Present

Newark, NJ, USA

- Advised by Dr. Joel Freundlich, collaborated with Dr. Connor Coley (MIT). Area of research: Machine Learning, Drug Discovery.
- Developed ML models for efficient search of drug candidates for Tuberculosis through molecular property prediction.
 Predicted the <u>PK profile</u> of molecules by training tree-based models (XGBoost, LightGBM, CatBoost, and Random Forest)
 - & fine-tuning state-of-the-art deep ML models (Graph Neural Networks, Transformer-based) with a test AUROC of 93%.
 Developed hand-crafted heuristics for aggregating results of several models and selected 96 compounds for experimental
 - validation, resulting in a **43%** PK activity rate and several candidates potentially moving to further testing stages.
 - \circ $\;$ Working on a preprint towards the Nature Machine Intelligence journal.
- Working on predicting docking ability of ligands with KasA protein for TB using deterministic & ML methods (e.g. DiffDock).
- Contributed majorly to developing the lab's ML Python library and setting best software engineering practices.

Student Researcher

Computational Biomedicine Imaging and Modeling Center, *Rutgers University* Sep 2022 – Present

New Brunswick, NJ, USA

- Advised by Dr. Matthew Stone and Dr. Karl Stratos. Area of research: Natural Language Processing.
- Analyzed the ability of language models such as T5-lm-adapt, T0, GPT-Neo, and GPT-3.5 to understand and complete analogies from a philosophical and neuroscience perspective.
 - Achieved a 20 point increase in MRR over baseline with efficient prompt engineering and In-Context learning.
 - Working on a preprint towards the *ACL 2024* conference.
- Adapted the <u>UPR method</u> using the T0 language model towards Question Answering, Fact Checking, and Entity Linking. Achieved competitive top-100 accuracy on Meta Al's KILT datasets such as TriviaQA (**86.5%**), NQ (**85.15%**), FEVER (**58.2%**).

Research Assistant

Department of Genetics, Rutgers University

Jan 2022 – May 2022

- New Brunswick, NJ, USA
 - Advised by Dr. Premal Shah. Area of research: Machine Learning, Computational Genomics.
 - Developed ML models for identifying translation start sites in *E. coli* bacteria genome with positive and unlabeled samples.
 - Created a semi supervised neural network using the <u>Non-negative risk estimator</u> framework under the PU learning paradigm to address dataset constraints. Able to identify **60%** of masked start sites in the test set with a recall of **12%**.

Research Assistant Singapore

Bioinformatics Research Center, Nanyang Technological University Jul 2018 – Dec 2018

- Advised by Dr. Kwoh Chee Keong. Area of research: Machine Learning, Drug Discovery. Outcomes: <u>Thesis</u> and <u>Poster</u>
- Leveraged Variational Graph Autoencoder for drug-target interaction prediction, achieving 89% AUC (near state-of-the-art).
- Predicted Virulence (LD₅₀) level of Influenza strains using traditional (GBDT, SVM, etc.) & GCN-based methods with **68%** acc.
- Worked on improving generative models such as <u>DruGAN</u> for de novo drug generation using Tensorflow.

INDUSTRY EXPERIENCE

Data Science Intern

San Francisco, CA, USA

• Deployed an ML model (XGBoost) and heuristics for predicting users with no payment intent to reduce underwriting risk and proposed actions to take on users based on the model score.

Faire May 2022 – Aug 2022

_ .

- The model directly addressed **40%** of Faire's defaults and showed a **25%** increase in commission over the baseline.
- Developed an end-to-end pipeline using SQL for preprocessing & feature selection and Python for model training & analysis.
- Designed optimization framework to select the best heuristics to aggregate model results for users across orders.
- Created a heuristic queue to identify fraud brands based on reviews, shipping info, and connected users with 65% F1 Score.

Data Scientist, Software Engineer

Bengaluru, KA, India

Payments Data Team

- Devised a novel recommender system using users' historical transactions to personalize the Razorpay checkout page by ranking payment methods. Observed an increase in user conversion rate by **4%** in backtest.
- Developed a model testing pipeline using Apache Spark to test the model on extensive data with over 100 million samples.
- Implemented a real-time prediction REST API around the model using Scala and Akka HTTP with a latency less than 300ms.

E-Commerce Fraud Detection Team

- Pioneered the development of critical components within Thirdwatch, a fraud detection platform, encompassing core business logic, ML models, the Data Science platform, and supporting backend components and infrastructure (used AWS).
- Created and deployed an ensemble XGBoost + CNN model to predict if an address is incomplete for delivery with **94%** AUC.
- Trained XGBoost models for predicting fraud e-commerce orders with **75%** AUC and deployed using H2O AutoML & AWS EC2.
- Implemented & scaled pipelines for model training, deployment, monitoring, and data ingestion using MLOps tools & Airflow.
- Published a workshop paper on shipping address classification at the E-Commerce workshop in *SIGIR 2021*.

TEACHING EXPERIENCE

Part-Time Lecturer Courses: Data 101

Teaching Assistant

Courses: Neural Networks, Digital Design, Computer Networks

Rutgers University Fall 2021 Birla Institute of Technology and Science, Pilani Fall 2017, Spring 2019

SKILLS

Expertise: Machine Learning, Deep Learning, Natural Language Processing, Graph Representation Learning, Computer Vision, Drug Discovery, Statistical Models, Hypothesis Testing, Software Engineering, Multi-GPU Inference and Training

Languages: Python, Scala, SQL, C++, Java, Go, Bash (Linux), R, LaTeX

- ML & Visualization: PyTorch (+ Lightning, Geometric, Torchvision, Torchtext), Tensorflow, Keras, Scikit-learn, MLLib, OpenCV, NLTK, Pandas, NumPy, SHAP, MLxtend, Matplotlib, Seaborn, Plotly
- **Big Data & Backend:** PySpark, Ray, MySQL, Snowflake SQL, MLFlow, Flask, Docker, Airflow, HDFS, MapReduce, AWS (S3, EC2, Sagemaker), ElasticSearch

Computational Biology & Chemistry: RDKit, DeepChem, Molecular Operating Environment (MOE), MDAnalysis, Auto-Dock Vina

NOTABLE PROJECTS

Visual Question Answering with Vision-Language Pretraining [Code] [Paper]

• Achieved exceptional accuracy (direct: **50%**, multiple-choice: **57.7%**) on the challenging <u>AOKVQA</u> dataset using the <u>GIT</u> model.

- Unsupervised Question Answering, Fact-Checking, and Entity Linking using Retrieval [Code] [Paper] Rutgers | 2022
 - Utilized the T0 language model for unsupervised text retrieval by re-ranking retrieved passages based on their prob scores.

Abstract Visual Reasoning using Vision Transformers [Code] [Paper]

- Assessed the effectiveness of ViT and BEiT pre-trained transformer models in solving the <u>RPM IQ test</u> utilizing <u>I-RAVEN</u> dataset.
- Attained a significant **71.5%** test accuracy by improving and fine-tuning a ViT variant, highlighting its competitive performance.

PUBLICATIONS

- Waradpande, V.A.; Prakash, P.V.S.; Jhaveri, N; Agarwal S "Predicting Completeness of Unstructured Shipping Addresses Using Ensemble Models" [SIGIR eCom '21] (PDF)
- Waradpande V.A., "Applications of Deep Graph Matrix Completion Models in Bioinformatics" [Undergraduate Thesis] (PDF)

Razorpay Jun 2019 – Aug 2021

Rutgers 2023

Rutgers | 2022